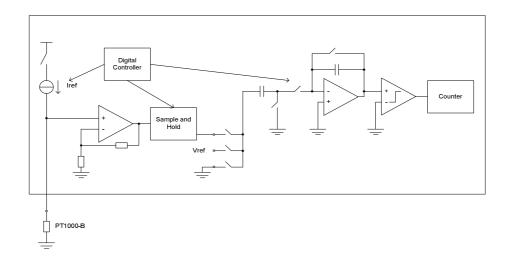
Analog IP Cell

PT1000 Temperature Sensor PT1000 XH035


General Description

Many controller-, data acquisition- and user information-applications require sensing environmental temperatures with IC-external sensors. The IP cell generates the required temperature independent reference current and voltage to set up a defined operating point of the sensor. Analogue-to-digital conversion is performed after analogue pre-processing by the Instrumentation Amplifier. The temperature depended sensor voltage is between 80mV and 140mV with a current of 100 μ A. This current is driven into the sensor for a short measurement period, in which the sensor voltage is amplified and sampled by a sample and hold block. This block holds the voltage during analogue-to-digital conversion process. A counting analogue-to-digital converter is implemented for conversion. The architecture needs 2 N clock cycles, where N is the number of output bits. The chosen converter type combines very low supply current with inherent monotony. A resolution of 13Bit is achieved without excessive trimming.

Ratings, Parameters and Conditions

Parameter / Condition	Symbol	Min	Тур.	Max	Unit	Comment
Electrical Parameters:						
Supply voltage	V_{dda}	2.7	3	3.3	V	
Supply current	$I_{dd} + I_{dda}$		800		μΑ	during measurement period
Supply current	$I_{dd} + I_{dda}$		50		μΑ	average
Input voltage high	V_h	0.8*V _{dd}			V	
Input voltage low	V _I			$0.2*V_{dd}$	V	
Effective resolution	N _{eff}		12		Bit	in sensor typical operating range
Repeatability	DT _{repeat}			0.1	K	
Accuracy uncertainty	DT _{abs}			0.4	K	
Power up time	T _{startup}			5	ms	
Response time	T _{res}			5	S	
Conversion time	T _{conv}		250	250	ms	
Input clock frequency	F _{clk}		32.768		kHz	
Absolute Maximum Ratings:						
Operating Temperature	T _{range}	-40	27	125	℃	
Supply Voltage	V_{dd}	-0.3		7	V	
Input Voltage	V _{in}	-0.3		V _{dd} +0.7		
Output Voltage	V _{out}	-0.3		V _{dd} +0.7		

Block Schematic:

Dieses Projekt wird im Rahmen der Technologieförderung mit Mitteln des Europäischen Fonds für regionale Entwicklung (EFRE) und mit Mitteln des Freistaates Sachsen gefördert.