

How to ...?

How to design truly energy saving lighting applications with less reactive power?

by Productivity Engineering GmbH

New power supply solutions for LED lighting and fluorescent energy saving lamps involve PFC !

What is power factor correction (PFC) good for? PFC avoids apparent power being drawn from the power grid. This apparent power becomes larger as the phase shift between current and voltage gets larger due to more capacitive or inductive loads. Such load behavior can be observed with LED light stripes or very often with fluorescent lamps. This topic is generally neglected since the apparent power is not paid for by private utility customers whereas large enterprises already pay for it. This becomes increasingly important with the change towards new lighting sources that require electronic circuitry. Without this power factor correcting circuitry the power grid would be heavily loaded with apparent power. Also, it is not to be forgotten that this sources not so effective any more.

For this reason governmental regulations in some countries have been in place for a couple of years now, but not world wide, e.g. the EN61000-3-2. Common incandescent lamps (with a power factor of one) will disappear from the European Union within 2 years. Instead there will be billions of LED and luminescent lamps. They are much more energy efficient but they require electronic circuitry to operate with an 110V or 220V power supply. This circuitry is typically within the housing of the light sources and so is not visible or noticeable to the user.

All of these electronic circuits have in common a rectifier and reservoir or smoothing capacitor on the power supply side. The capacitor is charged to the peak voltage every half cycle period. The charging current depends on how much the capacitor has been discharged by the load. This causes the current not to follow the voltage and in turn to cause a power factor of less than one. Following the rectification step is the electronic ballast circuit and a resonant tank circuit to ignite and run the lamp. This circuit as well as the DC/DC converter run at a higher frequency and additionally affect the power factor. For Power LEDs the power factor drops to 0.5 and for fluorescent lights it drops to 0.6. The federal regulations require power factor correction for lighting applications above power levels of 25 watts for a single source. These light sources typically have far less wattage when considered alone (3Watt LED/7Watt Fluorescent light bulb), but who in the world has only one of these in their chandeliers? Now if the whole European Union will have to account for these disharmonies (EN61000-3-2, class C).

Expecting this to happen, PE GmbH has developed very efficient electronic solutions for this problem. PE has developed PFC ICs with incomparable low power consumption. They cover a very wide power application range.

Active PFC is based on the principle to make the input current exactly follow the input voltage in such a way that very few frequency harmonics and phase shifts can be observed. This can be done by charging a capacitor with a voltage above the peak voltage of the input voltage (AC line voltage multiplied by sqrt2). This capacitor has enough energy that can be used to adapt the non linear load to draw linear current from the power line.

All presented lighting solutions can be used with a standard phase cut-off control for dimming. This standard dimmer is typically used for electronic transformers. Some work also with a phase angel control. This standard dimmer is typically used for light bulbs. Another flexible way to control the brightness of the LEDs is to use a microcontroller with an integrated DAC that drives the VCO input of the PE4201. This way any interface bus can be connected to the PFC circuitry.

If it is not for the PFC, PE GmbH presents very competitive electronic LED lighting solutions. PFC comes as an extra - almost for free.

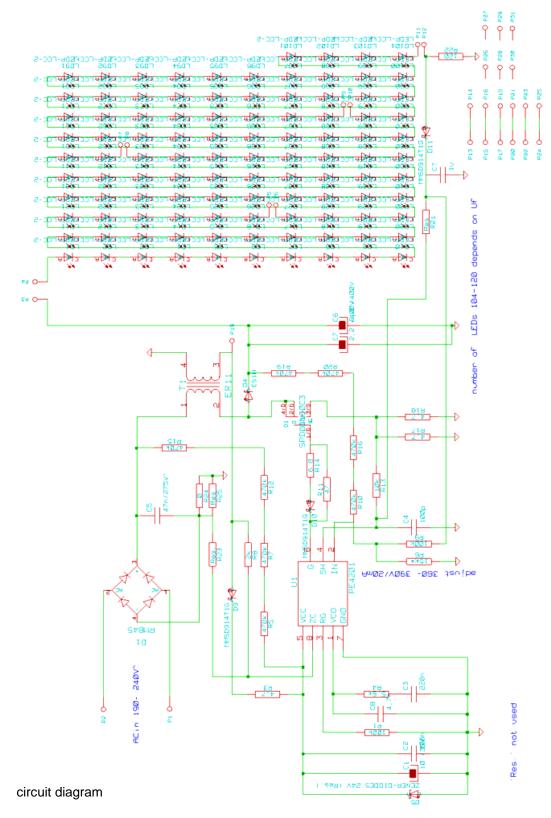
A miniaturized PFC board for implementation into a standard light tube (standard 16mm T5 glass tube) using PEs PFC IC PE4201 is described. The advantage of LED based lighting equipment over normal light tubes is the waiving of ballasts or inductors outside the lamp. Also, no mercury needs to be used; though LED based lighting products do not endanger the environment. In addition to the lighter BOM (bill of material), a lot of energy can be saved, since for the same light output, LEDs need half of the power compared to compact fluorescent lamps.

Top view PFC LED tube board (LEDs on the back side of the board, length 540mm)

Bottom view PFC LED tube board (partial view, total amount of LEDs: 104-120)

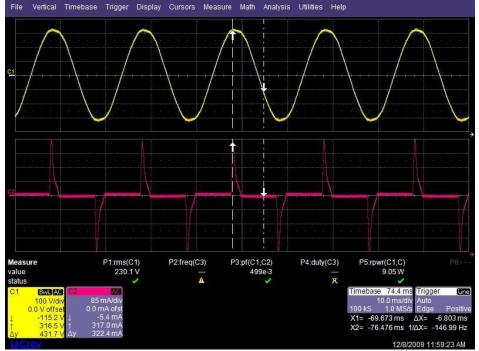
Technical Data

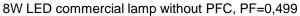
Input voltage
Output voltage
Max. input power
Efficiency
Power factor
Light output
Board dimension

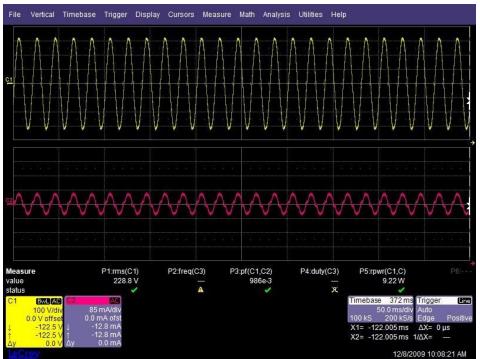

230V (50/60Hz) AC 360- 380V DC (one time to adjust) 8.5 W with PE4201 >90 % 0.90 to 0.98 (depending on power out) up to 100lm/W (depending on type of LEDs) length 540mm, width 10mm, height 10mm 8 Watt 220V LED string with PFC,

no galvanic decoupling

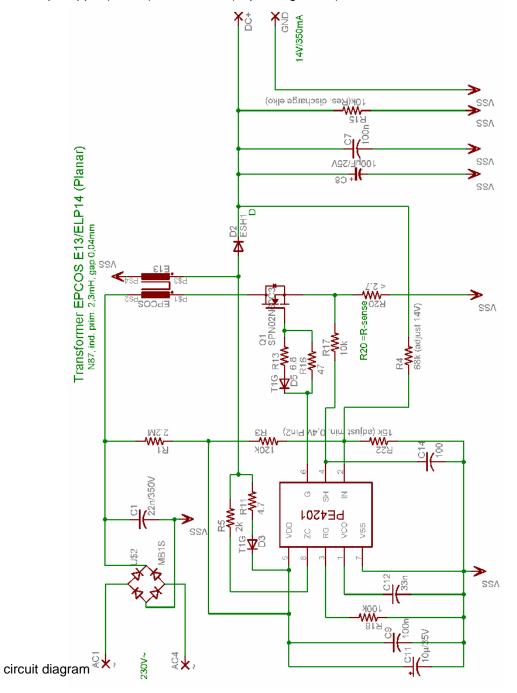
Productivity


Engineering


Serma Group



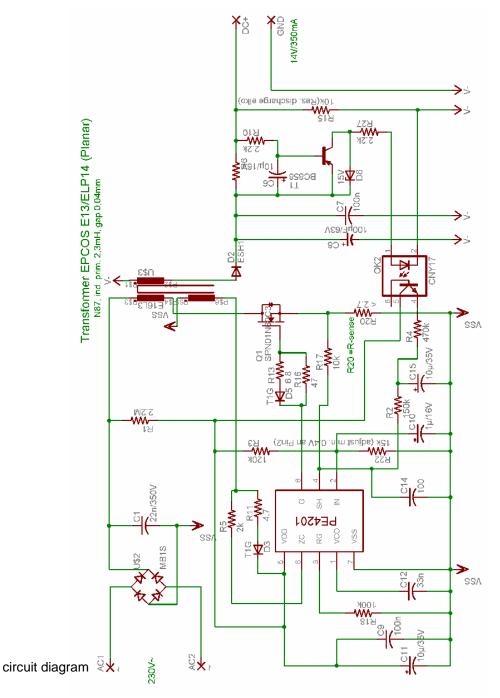
UHUUU



The same 8W LED lamp with PFC (PE4201), PF=0,986

Technical Data

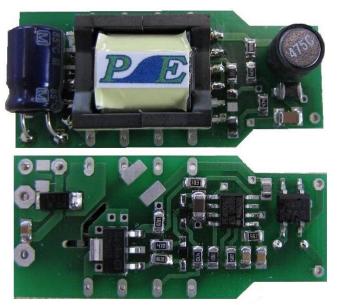
Input voltage	.190V/240V (50/60Hz) AC
Output voltage	14V DC (adjustable), 350mA
Max. output	5 W with PE4201
Efficiency	>82 %
Power factor	0.90 to 0.98
Output ripple (100Hz)	10% (depending on C8)


HUHHH

5 Watt 220V LED string with PFC, galvanic decoupling

Technical Data

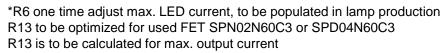
Input voltage	.190V/240V (50/60Hz) AC
Output voltage	14V DC (adjustable), 350mA
Max. output	5 W with PE4201
Efficiency	>82 %
Power factor	0.90 to 0.98
Output ripple (100Hz)	< 5% (with optocoupler)

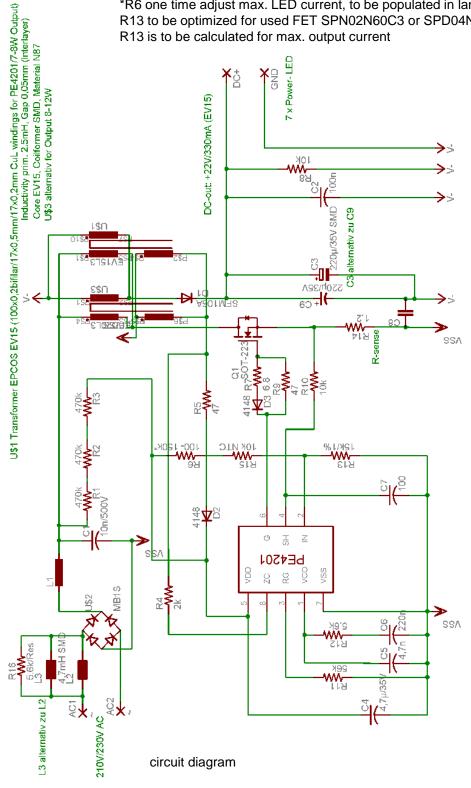


MARTIN

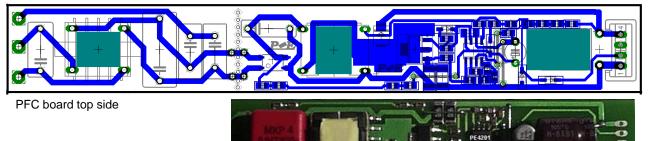
Technical Data

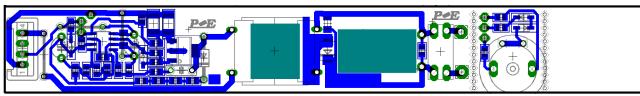
Input. Voltage		190-240V
Power factor		>= 0,9
Input Power		max. 11VA at 7-8W output power
Isolation		IP20
Output Voltage		21-24V/~330mA
Form factor		fits into E27- Aluminum LED Socket
Operating Tem	perature	0 65°C


Temperature compensation with NTC



PCB layout

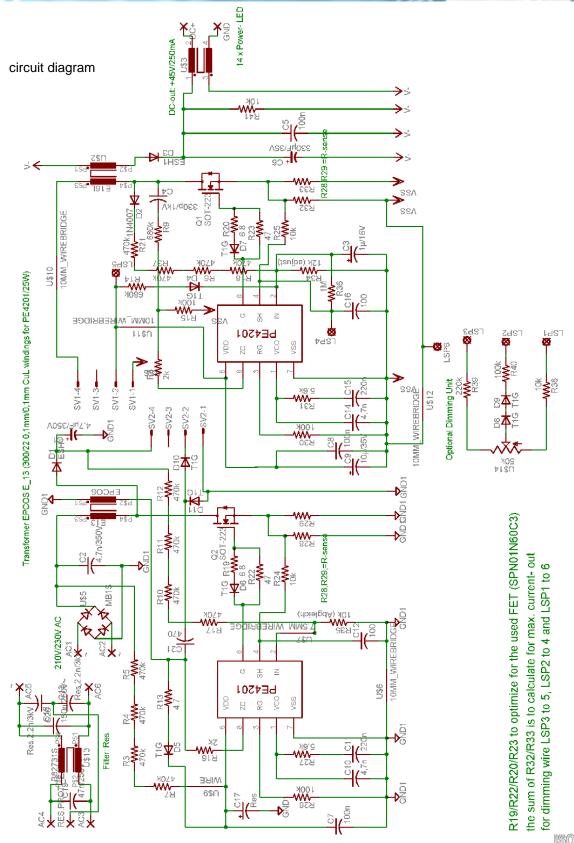



THE

This PFC-DC/DC converter board fits into a standard T8 light tube (28mm aluminium tube) using 2 of PEs PFC IC PE4201. The DC/DC converter is galvanically isolated from mains power, allowing the use of the aluminium profile on the rear side of the tube to effectively cool the LEDs.

DC/DC board top side

Technical Data

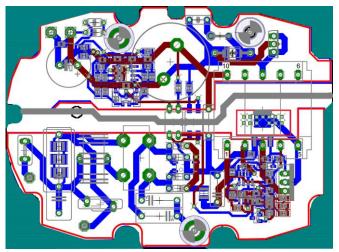

LED tube application, a one-to-one replacement of standard T8 fluorescent lamps by saving about 50% energy (same light output) and longer life cycle of the LED lamp.

Input voltage	230V (50/60Hz) AC
Output voltage	360- 380V DC
Max. input	14 W with PE4201
Efficiency PFC	>90 %
Power factor	0.95 to 0.98 (depend on power out)
Efficiency DC/DC converter	>80 %
DC/DC output	45V/250mA
Board dimension	length 290mm, width 21mm, height ~13mm

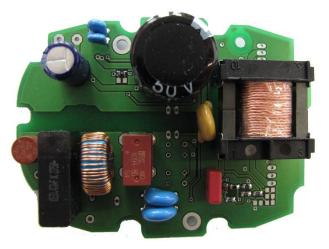
The LED board is an aluminium stripe with a length of 120cm (2 stripes 60cm each) with LEDs mounted in a single row (summarizing to 196 LEDs).

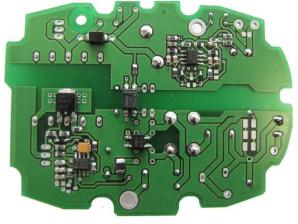
Available LED string lights have a power factor of 0.5 only!

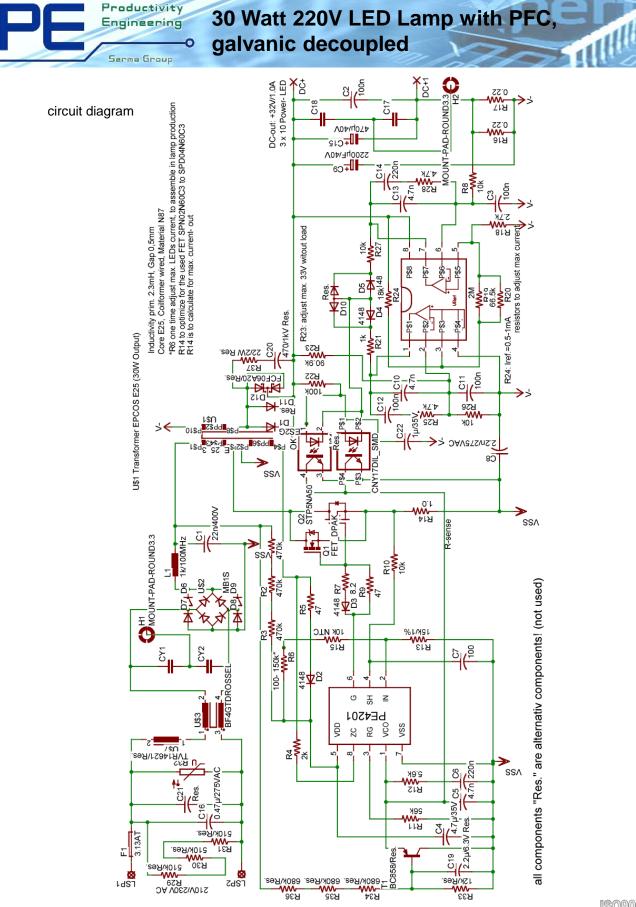
Productivity Engineering 14 Watt 220V LED string with PFC, galvanic decoupling



30 Watt 220V LED Lamp with PFC, galvanic decoupled

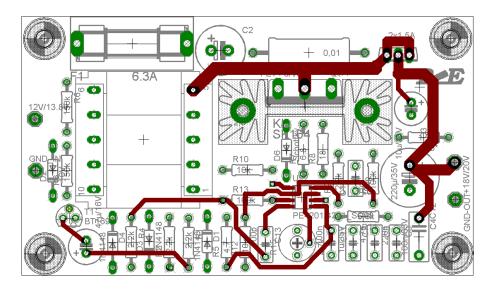

Technical data:


Input voltage	230VAC
Output voltage	30-34VDC current controlled for 30 LEDs
Output current	ca. 1-1,2A
Input power	35-40W
Output ripple	max 20%
Power factor	> 0,95
Operating temperature	-15 65°C
Form factor	socket E40, LED-lamp on Alu-heatsink for power LEDs (Street light)

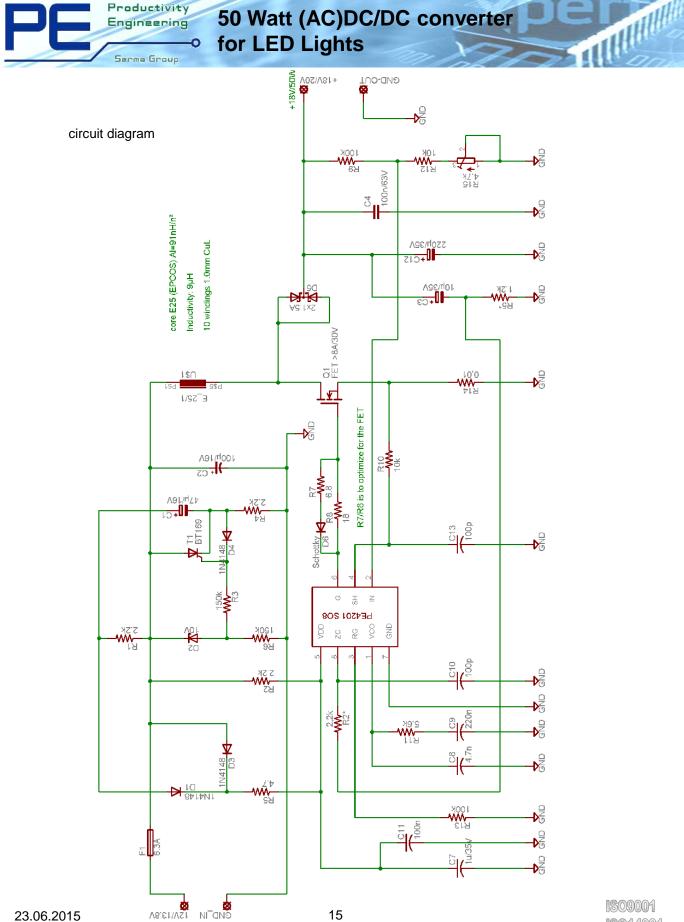

Output current control and stabilization, temperature compensation through NTC

PCB layout for LED street light

23.06.2015

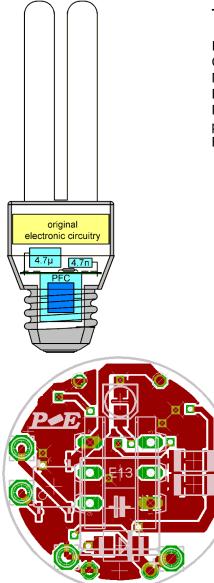

Basis for any LED application is a constant DC source. This application generates a constant output voltage and so current that can be fine tuned from a variable input DC voltage. It can be used for applications where low a DC voltage is available but needs to be stabilized efficiently for LED lighting , e.g. in cars or trailers. Due to the DC character this circuitry does not require a power factor correction unit.

It can also be used with a bridge rectifier and a larger C2 smoothing capacitor on the input to be powered by AC sources (e.g. small wind generator).


Technical Data:

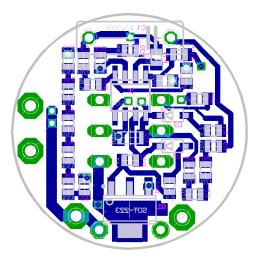
Input voltage
Output voltage
Max. Output
Efficiency
Board- Dimension

11,5-13,8V DC 18-20V DC (adjustable with 1% resistors) 50 W >85 % (25W), >75 %(50W) 106,5 mm x 55 mm x 25mm (L/B/H)



Board Layout

The form factor of energy saving lamps is a challenge since most of the space is occupied by the startup circuitry of the original lamp. A miniaturized PFC board for implementation into a socket of energy saving lamps (E27) using PEs PFC IC PE4201 is described.

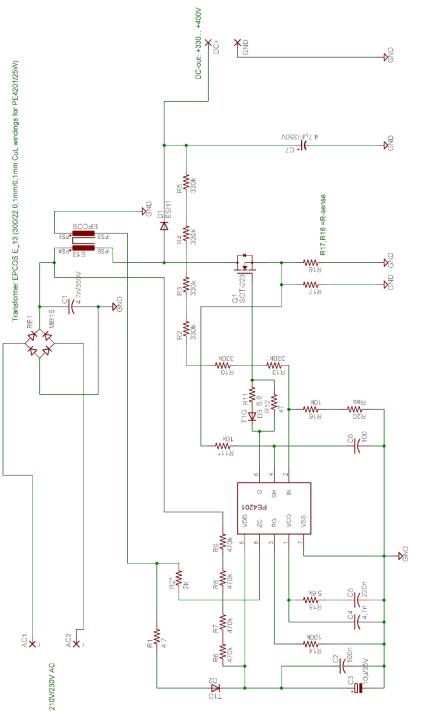

Technical Data

Input voltage
Output voltage
Max. output
Efficiency
Power factor
power out)
Board dimension

210V/230V (50/60Hz) AC 340- 400V DC (adjustable) 25 W with PE4201 >90 % 0.90 to 0.98 (depend on

diameter 29mm, height 15mm (assuming usage of existing electrolyte capacitor of the original lamp supply circuitry)

original dimension of the E27 PFC board



PFC board top side (diameter 29mm, height~15mm)

PFC board bottom side

A standard fluorescent lamp, has a power factor <0,6 at 18 watt only !

25 Watt 220V EnergySavingLamp with PFC, no galvanic decoupling

* only for PE4201 R11/R12 to optimize for the used FET (SPN01N60C3) the sum of R17/R18 is to calculate for max. switch-on current (power) and current- out

circuit diagram

Productivity

Engineering

Serma Group

O

HILLING

Contact Addresses

Germany	Stuttgart	Dresden
	Productivity Engineering GmbH Behringstrasse 7 D-71083 Herrenberg Germany Phone.: +49 (0) 70322798 0 Fax: +49 (0) 70322798 29 Email: <u>info@pe-gmbh.com</u>	Productivity Engineering GmbH Sachsenallee 9 D-01723 Kesselsdorf Germany Phone.: +49 (0) 35204777 00 Fax: +49 (0) 35204777 000 Email: <u>info@pe-gmbh.com</u>

Quality Data Quality Data is available on request

Productivity Engineering GmbH (PE) reserves the right to make corrections, modifications, enhancements, improvements, Important and other changes to its products and services at any time and to discontinue any product or service without notice. Notice Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PE's terms and conditions of sale supplied at the time of order acknowledgment. PE warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with PE's standard warranty. Testing and other quality control techniques are used to the extent PE deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. PE assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using PE components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. PE does not warrant or represent that any license, either express or implied, is granted under any PE patent right, copyright, mask work right, or other PE intellectual property right relating to any combination, machine, or process in which PE products or services are used. Information published by PE regarding third-party products or services does not constitute a license from PE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PE under the patents or other intellectual property of PE. Resale of PE products or services with statements different from or beyond the parameters stated by PE for that product or service voids all express and any implied warranties for the associated PE product or service and is an unfair and deceptive business practice. PE is not responsible or liable for any such statements. © 2015 PE GmbH. All rights reserved.

All trademarks and registered trademarks are the property of their respective owners.